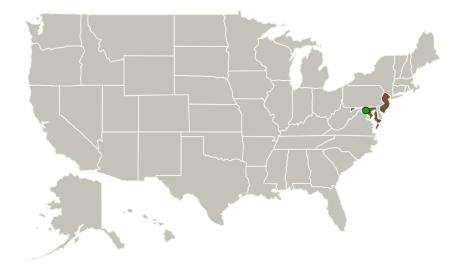
Small Business Innovation Research/Small Business Tech Transfer

Low-Noise, UV-to-SWIR Broadband Photodiodes for Large-Format Focal Plane Array Sensors, Phase II



Completed Technology Project (2011 - 2013)

Project Introduction

Broadband focal plane arrays, operating in UV-to-SWIR wavelength range, are required for atmospheric monitoring of greenhouse gases. Currently, separate image sensors are used for different spectral sub-bands: GaN for UV, Si for visible, and InGaAs for SWIR, requiring expensive component-level integration for hyper-spectral imaging. Also, the size of the InGaAs focal plane arrays is currently limited by the InP substrate area. We propose to develop a 640 x 512 UV-to-SWIR focal plane array sensor using GaAs substrate having following photodiode performance: (1) Cut-on Wavelength = 0.25 micron; (2) Cut-off Wavelength = 2.5 micron; (3) RoA > 35 Ohm-cm^2 at 300K; and (4) Quantum Eficiency > 30% in UV (0.25 to 0.4 micron), > 80% in Visible (0.4 to 0.9 micron), and > 70% in IR (0.9 to 2.5 micron) subbands. Based on P.I.'s experience on SCIAMACHY, this project will enable one image sensor for 8 spectroscopic channels currently orbiting on European Space Agency's ENVISAT.

Primary U.S. Work Locations and Key Partners

Low-Noise, UV-to-SWIR Broadband Photodiodes for Large-Format Focal Plane Array Sensors, Phase II

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Low-Noise, UV-to-SWIR Broadband Photodiodes for Large-Format Focal Plane Array Sensors, Phase II

Completed Technology Project (2011 - 2013)

Organizations Performing Work	Role	Туре	Location
Discovery Semiconductors, Inc.	Lead Organization	Industry Minority- Owned Business	Ewing, New Jersey
Goddard Space Flight Center(GSFC)	Supporting Organization	NASA Center	Greenbelt, Maryland

Primary U.S. Work Locations		
Maryland	New Jersey	

Project Transitions

0

June 2011: Project Start

October 2013: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139061)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Discovery Semiconductors, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

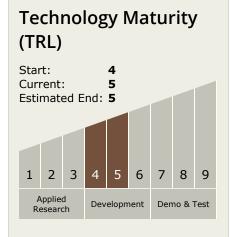
Carlos Torrez

Principal Investigator:

Abhay M Joshi

Co-Investigator:

Abhay Joshi



Small Business Innovation Research/Small Business Tech Transfer

Low-Noise, UV-to-SWIR Broadband Photodiodes for Large-Format Focal Plane Array Sensors, Phase II

Completed Technology Project (2011 - 2013)

Technology Areas

Primary:

- TX08 Sensors and Instruments
 - ☐ TX08.1 Remote Sensing Instruments/Sensors
 - ☐ TX08.1.1 Detectors and Focal Planes

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

